Journal cover Journal topic
Geoscientific Instrumentation, Methods and Data Systems An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 1.023 IF 1.023
  • IF 5-year<br/> value: 1.557 IF 5-year
    1.557
  • CiteScore<br/> value: 0.86 CiteScore
    0.86
  • SNIP value: indexed SNIP
    indexed
  • SJR value: indexed SJR
    indexed
  • IPP value: indexed IPP
    indexed
  • h5-index value: 10 h5-index 10
GI cover
Chief-executive editor:
Jothiram
Vivekanandan

Executive editors:
Ari-Matti
Harri
&
Håkan
Svedhem

Geoscientific Instrumentation, Methods and Data Systems (GI) is an open-access interdisciplinary electronic journal for swift publication of original articles and short communications in the area of geoscientific instruments. It covers three main areas: (i) atmospheric and geospace sciences, (ii) earth science, and (iii) ocean science. A unique feature of the journal is the emphasis on synergy between science and technology that facilitates advances in GI.

News

New institutional agreement between the PIK and Copernicus Publications

24 Aug 2017

Authors from the Potsdam Institute for Climate Impact Research (PIK) will profit from a new institutional agreement with Copernicus Publications starting 23 August 2017. The agreement which is valid for the first author enables a direct settlement of article processing charges (APCs) between the PIK and the publisher.

Update of publication policy

04 Jul 2017

The updated publication policy now is extended by the journal's open access statement, its archiving and indexing scheme, and explicit policies on corrections and retractions.

Revision of editors', referees', and authors' obligations

29 Jun 2017

The general obligations for editors, referees, and authors have been revised to give advice for the appropriate handling of literature suggestions.

Recent articles


Highlight articles

The term system-of-systems with respect to observational capabilities is frequently used, but what does it mean and how can it be assessed? Here, we define one possible interpretation of a system-of-systems architecture that is based upon demonstrable aspects of observing capabilities. We develop a set of assessment strands and then apply these to a set of atmospheric observational networks to decide which observations may be suitable for characterising satellite platforms in future work.

Peter W. Thorne, Fabio Madonna, Joerg Schulz, Tim Oakley, Bruce Ingleby, Marco Rosoldi, Emanuele Tramutola, Antti Arola, Matthias Buschmann, Anna C. Mikalsen, Richard Davy, Corinne Voces, Karin Kreher, Martine De Maziere, and Gelsomina Pappalardo

This work describes a new approach to use fast X-ray fluorescence mapping as a tool for automated mineralogy applied on thin sections of plutonic rocks. Using a supervised classification of the spectral information, mineral maps are obtained for modal mineralogy and image analysis. The results are compared to a conventional method for automated mineralogy, which is scanning electron microscopy with mineral liberation analyzer, showing a good overall accuracy of 76 %.

Wilhelm Nikonow and Dieter Rammlmair

This paper introduces a hands-on, low-cost device (German industrial property right no. 20 2014 106 048.0) that uses common adapters to mount p-ED-XRF devices so that these can provide bulk-sedimentary chemistry data from non-destructive measurements at the surface of a split sediment core or from other solid samples. The strength of combining p-ED-XRF analyses with this new sample chamber is demonstrated by exemplary sediment cores from an archaeological research project.

Philipp Hoelzmann, Torsten Klein, Frank Kutz, and Brigitta Schütt

A numerical inversion approach to detect and localize inclusions in thick walls under quasi-periodic natural solicitations is presented. It is based on a preliminary analysis of surface temperature field evolution with time. This analysis is improved by taking advantage of a priori information provided by ground-penetrating radar reconstructions. In this way, it is possible to improve the accuracy of the images achievable with the stand-alone thermal reconstruction method.

Nicolas Le Touz, Jean Dumoulin, Gianluca Gennarelli, and Francesco Soldovieri

Ground-penetrating radar (GPR) is a powerful tool that uses electromagnetic waves to obtain 3-dimensional images of natural or man-made structures and subsoil. It is employed in a large variety of applications in which non-destructive investigations are required. This paper deals with the use of GPR for the evaluation of moisture content in wood. The results of our work are of great interest for the preservation of timber structures, as moisture content is highly relevant to wood deterioration.

Hamza Reci, Tien Chinh Maï, Zoubir Mehdi Sbartaï, Lara Pajewski, and Emanuela Kiri

Publications Copernicus