Executive editors
▪ Jean Dumoulin
▪ Salvatore Grimaldi
▪ Ari-Matti Harri
▪ Håkan Svedhem

gi-executive-editors@mailinglists.copernicus.org

→ on average 162 days from submission to publication (2019)
→ indexed in the Science Citation Index Expanded (Web of Science), Current Contents, Scopus, ADS, Chemical Abstracts, DOAJ, GeoRef, J-Gate, and others
→ archived in Portico & CLOCKSS

Image credits (from top to bottom):
Artist Concept of Rover on Mars: NASA/JPL/Cornell University
Artist’s impression of SMOS in orbit: ESA – AOES Medialab
Global Positioning System (GPS): iStock.com/merial
Ocean buoy: Photo by Woods Hole Oceanographic Institution

IF: 1.302 | <6 months to publish
Aims and scope

Geoscientific Instrumentation, Methods and Data Systems (GI) is a not-for-profit open-access interdisciplinary electronic journal for swift publication of original articles and short communications in the area of geoscientific instruments. It covers four main areas: (i) atmospheric and geospace sciences, (ii) Earth science, (iii) ocean science, and (iv) urban environmental monitoring. A unique feature of the journal is the emphasis on the synergy between science and technology that facilitates advances in GI. These advances include but are not limited to the following:

- concepts, design, and description of instrumentation and data systems;
- retrieval techniques of scientific products from measurements;
- calibration and data quality assessment;
- uncertainty in measurements;
- newly developed and planned research platforms and community instrumentation capabilities;
- major national and international field campaigns and observational research programmes;
- new observational strategies to address societal needs in areas such as monitoring climate change, preventing natural disasters, and urban health monitoring;
- networking of instruments for enhancing high temporal and spatial resolution of observations;
- urban instrumentation and remote sensing;
- model-calibrated remote sensing;
- advanced data analytics and assimilation methods;
- multi-scale and multi-physical sensing;
- new concept in measurements system architecture;
- Internet of things (IoT) and massive low-cost instrumentation;
- citizen science data management;
- human sensing.